/bio/skills/blog/math

Take it to the limit

A famous limit

limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1

Proof

We will show that ϵ>0\forall \epsilon \gt 0 and x0\forall x \neq 0, δ>0\exists \delta \gt 0 such that:

x<δsinxx1<ϵ|x| \lt \delta \Longrightarrow |\frac{\sin x}{x} - 1| \lt \epsilon .

Assumptions

Let ϵ>0\epsilon \gt 0 be given.

Let 0<x<δ0 \lt |x| \lt \delta, where δ=min{π2,2ϵ}\delta = \min\{\frac{\pi}{2}, \sqrt{2 \epsilon}\}.

Then:

Since δ=min{π2,2ϵ}\delta = \min\{\frac{\pi}{2},\sqrt{2 \epsilon}\},
x<δ|x| \lt \delta implies that x<π2|x| \lt \frac{\pi}{2}

Note from the definition of sin\sin, without loss of generality for angles x(π2,0)(0,π2)x \in (-\frac{\pi}{2},0) \cup (0, \frac{\pi}{2}), x|x| is the distance of an arc on a circle, while sinx\sin |x| is the altitude, from the x-axis, of a triangle whose hypoteneuse the radius not along the x-asix. Since an altitude is less than a hypoteneuse and a chord is less than the arc that subtends it, we have:

sinx<x\sin |x| \lt |x|

We will also need the fact that on this interval tanx>x\tan |x| \gt |x|. Recall that on the unit circle, tanx\tan |x| is the line segment tangent to the circle from the circle's intersection with sinx\sin |x| to the x-axis. Moreover this tangent line is perpendicular to the circle's radius, 1. As such it forms the base of a right triangle with height 1, while the sector subtended by angle xx lies inside that triangle. Now we proceed:

  • Recalling the formula for the area of a sector:

    12(r2)x\frac{1}{2}(r^2) |x|, where xx is the angle.

    Then, we have that the sector carved out by the angle x is smaller than the triangle formed by using the radius and tangent x as legs:

    12(12)x<12(1)tanx\frac{1}{2}(1^2) |x| \lt \frac{1}{2}(1) \tan |x|

    or

    x<tanx|x| \lt \tan |x|.

  • From there we derive:

    cosx<sinxx\cos |x| \lt \frac{\sin |x|}{|x|},

  • recalling from above that sinx<x\sin |x| \lt |x| and noting that sin\sin is an odd function, we have:

    cosx<sinxx<1\cos |x| \lt \frac{\sin x}{x} \lt 1

  • cosx1<sinxx1<0\cos |x| - 1 \lt \frac{\sin x}{x} - 1 \lt 0

  • And since 1cosx>01 - \cos |x| \gt 0, we have:

    sinxx1<1cosx|\frac{\sin x}{x} - 1| \lt 1 - \cos |x|

  • But 1cosx=2sin2x21 - \cos |x| = 2 \sin^2 \frac{x}{2}, and sinx<x<δ2sin2x2<δ22\sin|x| \lt |x| \lt \delta \rightarrow 2 \sin^2 \frac{x}{2} \lt \frac{\delta^2}{2} so:

    sinxx1<2sin2x2<δ22|\frac{\sin x}{x} - 1| \lt 2 \sin^2 \frac{x}{2} \lt \frac{\delta^2}{2},

Conclusion

By picking δ=min{π2,2ϵ}\delta = \min\{\frac{\pi}{2},\sqrt{2 \epsilon}\},

x<δsinxx1<δ22ϵ|x| \lt \delta \rightarrow |\frac{\sin x}{x} - 1| \lt \frac{\delta^2}{2} \leq \epsilon .

As desired. \blacksquare

2025 Stefano De Vuono